Jump to content

Real Numbers: Difference between revisions

From Slow Like Wiki
Line 30: Line 30:
|<math>x \in[a,+\infty]</math><br><math>x \in]a,+\infty[</math><br><math>x \in]-\infty,a]</math><br><math>x \in]-\infty,a[</math>
|<math>x \in[a,+\infty]</math><br><math>x \in]a,+\infty[</math><br><math>x \in]-\infty,a]</math><br><math>x \in]-\infty,a[</math>
|<math> x \geq a</math><br><math>x > a</math><br><math>x \leq a</math><br><math>x < a</math>
|<math> x \geq a</math><br><math>x > a</math><br><math>x \leq a</math><br><math>x < a</math>
|-
|
|
|
|}
|}



Revision as of 16:34, 24 September 2025

Number Sets

Each number set contains the number set before it: /a

  • N: Natural Numbers - ie all whole numbers.
    • For example: 0,1,2... onwards
  • Z: Integers - ie all N plus negative integers.
    • For example -2,-1,0,1,2...
  • D: Decimals - ie all Z plus fractions that can be written with a finite number of decimals.
    • For example 11/4=2.75
  • Q: Rationals - ie all D, plus those that do recur (but may never terminate.
    • For example 1/3 ( = 0.333333) or 143/999 ( = 0.143143143)
  • R: Reals - ie all Q plus the irrationals, which are decimals that neither terminate nor recur.
    • For example π,2,33,2,5/2, etc

N is a subset of Z is a subset of D is a subset of Q is a subset of R

Intervals

Intervals are ways of specifying the range of possible values for x:

Interval Type Interval Values for the real number x
Closed x[a,b]
x[a,b[
x]a,b]
x]a,b[
axb
ax<b
a<xb
a<x<b
Open x[a,+]
x]a,+[
x],a]
x],a[
xa
x>a
xa
x<a

Solving Inequalities

Sign Tables

Absolute Values