Jump to content

Real Numbers: Difference between revisions

From Slow Like Wiki
No edit summary
Line 24: Line 24:
|-
|-
|Closed
|Closed
|<math>x \in[a,b]</math>
|<math>x \in[a,b]


x \in[a,b[


<math>x \in[a,b[</math>
x \in]a,b]


<math>x \in]a,b]</math>
x \in]a,b[</math>
 
<math>x \in]a,b[</math>
|<math>a \leq x \leq b</math>
|<math>a \leq x \leq b</math>
<math>a \leq x < b</math>
<math>a \leq x < b</math>
Line 49: Line 48:
|
|
|}
|}


== Solving Inequalities ==
== Solving Inequalities ==

Revision as of 16:20, 24 September 2025

Number Sets

Each number set contains the number set before it: /a

  • N: Natural Numbers - ie all whole numbers.
    • For example: 0,1,2... onwards
  • Z: Integers - ie all N plus negative integers.
    • For example -2,-1,0,1,2...
  • D: Decimals - ie all Z plus fractions that can be written with a finite number of decimals.
    • For example 11/4=2.75
  • Q: Rationals - ie all D, plus those that do recur (but may never terminate.
    • For example 1/3 ( = 0.333333) or 143/999 ( = 0.143143143)
  • R: Reals - ie all Q plus the irrationals, which are decimals that neither terminate nor recur.
    • For example π,2,33,2,5/2, etc

N is a subset of Z is a subset of D is a subset of Q is a subset of R

Intervals

Intervals are ways of specifying the range of possible values for x:

Interval Type Interval Values for the real number x
Closed x[a,b]x[a,b[x]a,b]x]a,b[ axb

ax<b

ax<b

a<xb

a<x<b

Open

Solving Inequalities

Sign Tables

Absolute Values