Jump to content

Literal Calculation: Difference between revisions

From Slow Like Wiki
Line 32: Line 32:
* Thanks to the third remarkable identity, <math>(a + b\sqrt{n})(a - b\sqrt{n}) = a^2 - nb^2</math>
* Thanks to the third remarkable identity, <math>(a + b\sqrt{n})(a - b\sqrt{n}) = a^2 - nb^2</math>
* In an expression like <math>\frac{A}{a + b\sqrt{2}}</math>you can simplify the denominator: <math>\frac{A}{a + b\sqrt{2}} = \frac{A(a - b\sqrt{2})}{a^2 - 2b^2}</math>
* In an expression like <math>\frac{A}{a + b\sqrt{2}}</math>you can simplify the denominator: <math>\frac{A}{a + b\sqrt{2}} = \frac{A(a - b\sqrt{2})}{a^2 - 2b^2}</math>
== Equations ==
* If <math>ax + b = 0</math>, if a is non-null, <math>x = -\frac{b}{a}</math>
* If A = 0 or B = 0, then AB = 0
== Inequalities ==
For reals:
* If <math>a \leq b</math>then <math>a + c \leq b + c
</math>
* If <math>a \leq b</math>and <math>c \leq d</math>then <math>ac \leq bc
</math>
* If <math>a \leq b</math>and <math>c \geq 0</math>then

Revision as of 10:53, 6 December 2025

Developing and Factorizing Equations

For any real numbers:

  • a(b+c)=ab+ac
  • a(bc)=abac
  • (a+b)(c+d)=ac+ad+bc+bd

Remarkable Identities

For any real numbers:

  • Square of a sum: (a+b)2=a2+2ab+b2
  • Square of a difference: (ab)2=a22ab+b2
  • Difference of two squares: a2b2=(a+b)(ab)

Powers and Exponents

For any non-null natural integer:

  • an=a*a*a**an
  • When n=0;a0=1
  • If n is a natural integer et a is a non-null real number: an=1an

Square Roots

If a is a positive real number, then there are two reals (one positive and one negative) for which the square is a.

  • The positive one is written as:a
  • If a = 0, we can write 0=0
  • The formula a2 is equal to a or -a
  • For two non-null positive reals: ab=ab
  • If a is a positive real or null and b is positive: ab=ab
  • In particular: 1b=1b
  • In an expression like Ab, you can make the denominator rational: Ab=Ab(b)2=Abb
  • Thanks to the third remarkable identity, (a+bn)(abn)=a2nb2
  • In an expression like Aa+b2you can simplify the denominator: Aa+b2=A(ab2)a22b2

Equations

  • If ax+b=0, if a is non-null, x=ba
  • If A = 0 or B = 0, then AB = 0

Inequalities

For reals:

  • If abthen a+cb+c
  • If aband cdthen acbc
  • If aband c0then