Real Numbers: Difference between revisions
Appearance
Line 28: | Line 28: | ||
|- | |- | ||
|Open | |Open | ||
|<math>x \in[a,+\infty]</math><br><math>x \in | |<math>x \in[a,+\infty]</math> | ||
<br><math>x \in]a,+\infty[</math> | |||
<br><math>x \in]-\infty,a]</math> | |||
<br><math>x \in]-\infty,a[</math> | |||
|<math>a \leq x \leq b</math><br><math>a \leq x < b</math><br><math>a < x \leq b</math><br><math>a < x < b</math> | |<math>a \leq x \leq b</math><br><math>a \leq x < b</math><br><math>a < x \leq b</math><br><math>a < x < b</math> | ||
|- | |- |
Revision as of 16:32, 24 September 2025
Number Sets
Each number set contains the number set before it:
- N: Natural Numbers - ie all whole numbers.
- For example: 0,1,2... onwards
- Z: Integers - ie all N plus negative integers.
- For example -2,-1,0,1,2...
- D: Decimals - ie all Z plus fractions that can be written with a finite number of decimals.
- For example
- Q: Rationals - ie all D, plus those that do recur (but may never terminate.
- For example ( = 0.333333) or ( = 0.143143143)
- R: Reals - ie all Q plus the irrationals, which are decimals that neither terminate nor recur.
- For example , etc
N is a subset of Z is a subset of D is a subset of Q is a subset of R
Intervals
Intervals are ways of specifying the range of possible values for x:
Interval Type | Interval | Values for the real number x |
---|---|---|
Closed | ||
Open |
|
|