Jump to content

Real Numbers: Difference between revisions

From Slow Like Wiki
 
(35 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Number Sets ==
== Number Sets ==
Each number set contains the number set before it:
Each number set contains the number set before it:
<math>/a</math>
* N: Natural Numbers - ie all whole numbers.
** For example: 0,1,2... onwards
* Z: Integers - ie all N plus negative integers.
** For example -2,-1,0,1,2...
* D: Decimals - ie all Z plus fractions that can be written with a finite number of decimals.
** For example <math>\frac{11}{4} = 2.75 </math>
* Q: Rationals - ie all D, plus those that do recur (but may never terminate.
** For example <math>\frac{1}{3}</math> ( = 0.333333) or <math>\frac{143}{999}</math> ( = 0.143143143)
* R: Reals - ie all Q plus the irrationals, which are decimals that neither terminate nor recur.
** For example <math display="inline">\pi, \sqrt{2}, 3\sqrt{3}, -\sqrt{2}, -\frac{\sqrt{5}}{2}</math>, etc


N is a subset of Z is a subset of D is a subset of Q is a subset of R


== Intervals ==
Intervals are ways of specifying the range of possible values for x:
{| class="wikitable"
|+
!Interval Type
!Interval
!Values for the real number x
|-
|Closed
|<math>x \in[a,b]</math><br><math>x \in[a,b[</math><br><math>x \in]a,b]</math><br><math>x \in]a,b[</math>
|<math>a \leq x \leq b</math><br><math>a \leq x < b</math><br><math>a < x \leq b</math><br><math>a < x < b</math>
|-
|Open
|<math>x \in[a,+\infty]</math><br><math>x \in]a,+\infty[</math><br><math>x \in]-\infty,a]</math><br><math>x \in]-\infty,a[</math>
|<math> x \geq a</math><br><math>x > a</math><br><math>x \leq a</math><br><math>x < a</math>
|}
The interval <math>[a,a]</math> is equal to <math>[a]</math>.


* N: Natural Numbers - ie all whole numbers - 0,1,2... onwards
The interval <math>[b,a]</math> where <math>b > a</math> is empty.
* Z: Integers - ie all N plus negative integers - -2,-1,0,1,2...
 
* D: Decimals - ie all Z plus fractions that
The intersection of two intervals is always an interval or the empty set.
* Q: Rationals - ie
 
* R: Reals - ie all Q plus the irrationals, which are decimals that neither terminate nor recurr
If the intersection of two intervals is not empty, then the union of them is an interval.
 
== Solving Inequalities ==
If the real number <math>a</math> is :
 
* Positive, then all solutions  to <math>ax + b > 0</math> is <math>]-b/a, +\inf[</math>.
* Negative, then all solutions  to <math>ax + b > 0</math> is <math>]-\inf, -b/a[</math>.
 
== Sign Tables ==
 
== Absolute Values ==

Latest revision as of 16:47, 24 September 2025

Number Sets

Each number set contains the number set before it: /a

  • N: Natural Numbers - ie all whole numbers.
    • For example: 0,1,2... onwards
  • Z: Integers - ie all N plus negative integers.
    • For example -2,-1,0,1,2...
  • D: Decimals - ie all Z plus fractions that can be written with a finite number of decimals.
    • For example 114=2.75
  • Q: Rationals - ie all D, plus those that do recur (but may never terminate.
    • For example 13 ( = 0.333333) or 143999 ( = 0.143143143)
  • R: Reals - ie all Q plus the irrationals, which are decimals that neither terminate nor recur.
    • For example π,2,33,2,52, etc

N is a subset of Z is a subset of D is a subset of Q is a subset of R

Intervals

Intervals are ways of specifying the range of possible values for x:

Interval Type Interval Values for the real number x
Closed x[a,b]
x[a,b[
x]a,b]
x]a,b[
axb
ax<b
a<xb
a<x<b
Open x[a,+]
x]a,+[
x],a]
x],a[
xa
x>a
xa
x<a

The interval [a,a] is equal to [a].

The interval [b,a] where b>a is empty.

The intersection of two intervals is always an interval or the empty set.

If the intersection of two intervals is not empty, then the union of them is an interval.

Solving Inequalities

If the real number a is :

  • Positive, then all solutions to ax+b>0 is ]b/a,+inf[.
  • Negative, then all solutions to ax+b>0 is ]inf,b/a[.

Sign Tables

Absolute Values